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Ocean 620
Internal Gravity Waves

Motivation

If you randomly pick a location in the ocean, moor a
current meter there for a few days, and look at the
record, chances are that most of the variance will be
due to motions in the broad category of internal grav-
ity waves. If you focus on the variance at frequencies
higher than about a cycle per day, then it is almost
certain that the bulk of this variance will be due to
internal waves.

Internal waves can exist in any stratified fluid. They
are simply perturbations of the density field (or in-
terface height, in a layered medium) that propagate
in a wave-like manner. For the internal waves that
we will consider first, the restoring forces are grav-
ity and Coriolis. These waves are internal gravity
waves; in the limit of nearly horizontal motion, so
that Coriolis is much more important than gravity
as a restoring force, they are called inertial or near-
inertial waves. Other types of internal waves, to be
considered in later lectures, are internal Kelvin waves
(gravity waves strongly influenced by rotation and
constrained to propagate along coastlines or the equa-
tor) and Rossby waves (which can be thought of as
potential vorticity waves).

The way we describe the vertical structure of internal
waves depends on their vertical scale. If the scale is
very small compared to the water depth, then it is
usually most efficient to think of the waves as propa-
gating vertically and horizontally in a stratified fluid
of infinite extent. If the vertical scale of the waves
is not small compared to the water depth, it is often
useful to describe them as horizontally propagating
waves with a standing wave structure in the vertical—
vertical normal modes. In the present lecture we will
concentrate on the vertically propagating description.

The importance of internal gravity waves is two-fold:

1. They are a large part of the “noise” in the ocean
that clutters up measurements when one is try-
ing to discern the large-scale, low frequency cir-
culation.

2. They play a major role in ocean mixing, that
is, in the complex process that we try to sweep

under the rug as “eddy diffusivity”.

The role of internal waves as noise is fairly well un-
derstood, but is sometimes forgotten by people plan-
ning or studying measurements. The role of internal
waves in mixing is still not very well understood, and
is among the most active research areas in PO.

Why do internal waves exist?

Imagine a fluid parcel (or a water balloon) in a strat-
ified fluid. If that parcel is displaced upward from its
equilibrium position it will be less buoyant than the
surrounding fluid, so it will sink when released. When
it gets back to its equilibrium position it will still have
downward momentum, so it will overshoot. Hence it
will oscillate. The frequency of oscillation is called the
Brunt-Vaisala or buoyancy frequency, and is always
denoted by the letter N . If the fluid were perfectly
incompressible, the frequency would be given by

N2 = −g
ρ
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This should look very reasonable to you: the fre-
quency of an oscillator is proportional to the square
root of the restoring force per unit mass, which in this
case is proportional to the density gradient and to g.
Taking into account compressibility, it turns out that
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where C is the speed of sound. The higher the speed
of sound, the less compressible the fluid must be, and
the smaller the difference between the in situ density
gradient and the adiabatic density gradient.

A better way to remove the effect of compressibility is
to estimate the derivative at each depth by differenc-
ing the potential density of parcels slightly above and
below that depth, where “potential” means that den-
sity is calculated after moving each parcel adiabati-
cally to the depth in question. Numerically, this al-
lows much more accurate estimates when N is small;
and conceptually, it is a clearer statement of what
what controls the buoyancy frequency.

Values of N in the ocean range from one cycle per
5 minutes or less in the equatorial thermocline to
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roughly 1 cycle per 3 hours at 5000 m. Of course,
N is zero in homogeneous areas such as the surface
mixed layer (when it is indeed thoroughly mixed).

What do internal waves look like, and
how do they propagate?

Fluid displacements do not have to be vertical; one
can imagine planes of fluid tilted at some angle θ
from the vertical. (Note that this theta is then the
magnitude of the elevation angle of the wavenumber
from the horizontal.) This reduces the restoring force
by cos2 θ: one factor of cos θ comes from taking the
component of gravity in the direction of motion, the
other from taking that component of the density gra-
dient. The frequency of oscillation, ω, then goes as
cos θ. Neglecting the rotation of the earth, we have

ω = N cos θ. (4)

As the planes of motion become more horizontal
(θ → π/2), however, the Coriolis force comes into
play. When the planes are perfectly horizontal we
have inertial oscillations, in which particles move
in anticyclonic circular trajectories with ω = f . Gen-
eralizing, for any value of 0 < θ < π/2, the particle
trajectory in the tilted plane will be an ellipse with
frequency N > ω > f . The ellipse becomes a vertical
line at ω = N , θ = 0, and broadens out into a circle
at ω = f , θ = π/2. Recall that f is one cycle per
24 hours at 30◦ latitude, and about one cycle per 33
hours near Honolulu. Quantitatively, taking f into
account, we have

ω2 = (N cos θ)2 + (f sin θ)2. (5)

Just as with surface waves, we are considering a
mathematical idealization. For surface waves this was
a wave that was sinusoidal in x (say) and constant in
y, extending to infinity in both directions. For inter-
nal waves we are imagining the fluid is unbounded in
all directions. Now the disturbance is sinusoidal in
x and z, and uniform in y (because we align our co-
ordinate system so that the horizontal component of
propagation is in the x direction). For simplicity we
are also requiring that N be a constant. The velocity
field and displacement, η, can then be expressed as

u = u0 cos(kx+mz − ωt) (6)

v = u0
f

ω
sin(kx+mz − ωt) (7)

w = −u0
k

m
cos(kx+mz − ωt) (8)

η = −u0 ω
k

m
sin(kx+mz − ωt) (9)

with the dispersion relation

m2

k2
=
N2 − ω2

ω2 − f2
. (10)

Note that the waves now propagate in the horizon-
tal and the vertical; the vertical component of the
wavenumber vector is m, the horizontal component
is k.

From the dispersion relation we can, of course, calcu-
late the phase velocity and the group velocity. The
phase velocity vector is aligned with the wavenumber
vector, normal to the planes of motion, that is, nor-
mal to the velocity vector at any time. The group
velocity vector, on the other hand, lies on the inter-
section of the plane of motion and a normal vertical
plane; that is, it is either up or down the plane of
motion.

Now, here is a peculiar feature of all internal waves:
the vertical component of the group velocity is always
opposite to the vertical component of the phase ve-
locity. Suppose you have an array of current meters
in the vertical, so that you can measure the vertical
component of the phase velocity. If it is upward, so
that an extremum in u, say, occurs at successively
later times at shallower current meters, then the in-
ternal wave energy must be propagating downward.

Another peculiar feature of internal waves is the way
they reflect off a flat surface. Frequency is conserved
in a reflection, as is the component of the wavenum-
ber vector along the surface. For a given frequency,
however, the angle between the wavenumber vector
and the vertical is also fixed. The result is that the
angle of incidence does not in general equal the angle
of reflection. Wave energy can be trapped in a corner,
leading to large amplitudes and nonlinear, dissipative
behavior (breaking). It can also be trapped along
a slope, leading to increased energy and dissipation
there. This may be one of the main mechanisms by
which mixing occurs in the ocean.

For small-scale internal waves, the variation of N
with depth can be handled with a common math-
ematical technique called the WKB method. N is
considered as varying slowly compared to the verti-
cal scale of the wave (1/m), so rays of wave energy
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are simply refracted. This is analogous to the refrac-
tion of surface waves by a gradually shoalling ocean
bottom.

Where do internal waves come from?

No one knows completely; there is a roughly isotropic,
homogeneous field of internal wave noise in the ocean,
with waves going every which way, so it is not at all
clear where the sources are. Here are some of the
processes involved, however:

Tides moving over topography generate internal
tides, that is, internal waves at tidal frequencies,
and at higher harmonics via nonlinear processes.

Surface waves can interact with each other to gen-
erate internal waves.

Wind changes excite near-inertial waves. As these
propagate to lower latitudes the local inertial
frequency decreases while the frequency of the
waves remains unchanged, so they are no longer
“near-inertial”.

Convection in the mixed layer sends blobs of fluid
bouncing off the base of the mixed layer, exciting
internal waves that propagate away both down-
ward and horizontally.

Instabilities due to fluid shear also cause turbu-
lence, some of which radiates internal wave en-
ergy away from the disturbance.

Nonlinear interaction of existing internal waves
causes exchanges of energy that tend to even out
the spectrum.

The typical frequency-wavenumber spectrum of inter-
nal wave energy—the ocean noise field—has been de-
scribed and approximated as a simple analytical form
by Chris Garrett and Walter Munk. Their model
is called the GM spectrum. This model is purely
empirical—it is a simplified mathematical description
of the observed internal wave spectrum. It does not
address the question of why such a spectrum exists
so widely in the ocean.

Where do internal waves go?

Internal wave energy must all be dissipated some-
where, and it is not clear how much dissipation occurs
where. One dissipation mechanism is wave breaking,
analogous to the breaking of surface waves. The su-
perposition of various internal waves, with perhaps a
contribution from the larger scale current field, can
lead to an instability and thence to turbulent mix-
ing. As already noted, this process may be greatly
enhanced along ocean boundaries.

Internal waves do not always act to dissipate mean
flows, in the normal sense of an eddy diffusivity;
they can actually accelerate larger scale flows. Places
where this occurs are called critical layers. They in-
volve refraction of internal waves by the shear of a
larger scale flow, to the point where the waves can
no longer exist. The momentum they carry is then
dumped into the mean flow.

Math: phase and group velocity

The dispersion relation for internal waves in an infi-
nite domain with uniform stratification (10) can be
rearranged as

ω2 =
k2N2 +m2f2

k2 +m2
. (11)

Taking the square root of both sides would put it
in the conventional form, specifying frequency as a
function of the wavenumber components, but leaving
it squared simplifies the calculation of group velocity.
Taking the partial derivative of (11) with respect to
k, we have

2ω
∂ω

∂k
=

2kN2(k2 +m2)− 2k(k2N2 +m2f2)

(k2 +m2)2

=
2km2(N2 − f2)

(k2 +m2)2
. (12)

For the vertical wavenumber component, skipping the
first step, we have

2ω
∂ω

∂m
=
−2mk2(N2 − f2)

(k2 +m2)2
. (13)

Therefore the group velocity vector is

~cg = (km2,−mk2)

[
N2 − f2

ω(k2 +m2)

]
. (14)
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The phase velocity vector is

~cp = (k,m)

[
1

ω

]
. (15)

Now it is easy to see that ~cp · ~cg = 0, so the group ve-
locity is perpendicular to the phase velocity. Further-
more, the expressions in square brackets are positive
(we define ω as positive so that all directional infor-
mation is in the signed wavenumber components), so
the horizontal components of ~cp and ~cg have the same
sign, but the vertical components have opposite sign.


